Computational Fluid Dynamics In Tetralogy Of Fallot Repair: **Sensitivity Of Energy Efficiency Calculations To Boundary** Conditions

Leslie Louvelle, BASc Matthew Doyle, PhD Glen Van Arsdell, MD Cristina Amon, ScD

Background

- Surgical repair of Tetralogy of Fallot (TOF) can produce a variety of potential postoperative geometries, some of which may be hemodynamically superior to, or more energy efficient than, others
- Energy efficiency can be estimated using computational fluid dynamics (CFD) simulations of the postoperative geometries
- However, the accuracy of these simulations is dependent on the boundary conditions imposed on the geometry's inlet(s) and outlet(s)

Aim

Investigate the sensitivity of the calculated energy efficiency to changes in the boundary conditions.

Methods

- 16 postoperative TOF patient geometries were segmented from cardiac magnetic resonance angiography imaging
- CFD simulations were completed in SimVascular with a range of inlet flow rates and outlet resistances
- Energy efficiency was calculated for each case

Group A (More Sensitive)

100%

90% (%) 80% 70% 60%

EFFICIENCY

50%

Pulmonary artery geometries exhibit a drop in efficiency with an increased cardiac output (inlet flow rate).

Some geometries are more sensitive to changes in **downstream resistance** (outlet flow percentage) than others.

Group B (Less Sensitive)

70%

Figure 2: Velocity contours for (A) a geometry more sensitive to changes in downstream resistance and (B) a geometry less sensitive to changes in downstream Columns show changes to LPA flow resistance. percentage (30%, 45%, 60%).

Extra Tables & Figures		
100% 90% 80% 70% 60% 50%	100%	
-50% 0% INLET FLOW R (% CHANGE	50% -50% ATE INI	0% 50% LET FLOW RATE (% CHANGE)
gure 1: Changes in efficiency with inlet flow rate (cardiac itput). (A) Geometries sensitive to flow split changes. (B) eometries less sensitive to flow split changes.		
30%	45%	60%
Velocity (m/s) 0.00 1.0 2.4	Velocity (m/s) 0.00 1.0 2.4	Velocity (m/s) 0.00 1.0 2.4
Velocity (m/s) 0.00 1.0 2.4	Velocity (m/s) 0.00 1.0 2.4	Velocity (m/s) 0.00 1.0 2.4
Velocity (m/s) 0.00 0.50 1.0 1.3	Velocity (m/s) 0.00 0.50 1.0 1.3	Velocity (m/s) 0.00 0.50 1.0 1.3
Velocity (m/s) 0.00 0.50 1.0 1.3	Velocity (m/s) 0.00 0.50 1.0 1.3	Velocity (m/s) 0.00 0.50 1.0 1.3